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A B S T R A C T

Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalo-
graphy (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked
in the literature, is the putative effect of the choice of the inverse method on the subsequent cortico-cortical
coupling analysis. We set out to investigate the impact of three inverse methods on source coherence detection
using simulated MEG data. To this end, thousands of randomly located pairs of sources were created. Several
parameters were manipulated, including inter- and intra-source correlation strength, source size and spatial
configuration. The simulated pairs of sources were then used to generate sensor-level MEG measurements at
varying signal-to-noise ratios (SNR). Next, the source level power and coherence maps were calculated using
three methods (a) L2-Minimum-Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV)
beamforming, and (c) Dynamic Imaging of Coherent Sources (DICS) beamforming. The performances of the
methods were evaluated using Receiver Operating Characteristic (ROC) curves. The results indicate that
beamformers perform better than MNE for coherence reconstructions if the interacting cortical sources consist
of point-like sources. On the other hand, MNE provides better connectivity estimation than beamformers, if the
interacting sources are simulated as extended cortical patches, where each patch consists of dipoles with
identical time series (high intra-patch coherence). However, the performance of the beamformers for interacting
patches improves substantially if each patch of active cortex is simulated with only partly coherent time series
(partial intra-patch coherence). These results demonstrate that the choice of the inverse method impacts the
results of MEG source-space coherence analysis, and that the optimal choice of the inverse solution depends on
the spatial and synchronization profile of the interacting cortical sources. The insights revealed here can guide
method selection and help improve data interpretation regarding MEG connectivity estimation.
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